

Speech data Augmentation in the frequency
domain using Deep Learning Methods

A Practice School Report submitted to

Manipal Academy of Higher Education

in partial fulfilment of the requirement for the award of the degree of

BACHELOR OF TECHNOLOGY

in

Computer Science & Engineering

Submitted by

 Shashank Shirol

 170905178

Under the guidance of

Dr. Chng Eng Siong Dr. Muralikrishna SN

Assoc. Professor Asst. Prof. – Senior Scale

School of Computer Sci. and Engg. Dept. of Computer Sci. and Engg.

Nanyang Technological University Manipal Institute of Technology

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

July 2021

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

Manipal

12/07/2021

CERTIFICATE

This is to certify that the project titled Speech data Augmentation in the frequency

domain using Deep Learning Methods is a record of the bonafide work done by

Shashank Shirol (Reg. No. 170905178) submitted in partial fulfilment of the requirements

for the award of the Degree of Bachelor of Technology (B.Tech.) in COMPUTER

SCIENCE & ENGINEERING of Manipal Institute of Technology, Manipal, Karnataka,

(A Constituent Institute of Manipal Academy of Higher Education), during the academic

year 2021.

Dr. Muralikrishna SN

Asst. Prof. – Senior Scale, CSE Dept.

M.I.T, MANIPAL

 Prof. Dr. Ashalatha Nayak

 HOD, CSE Dept.

 M.I.T, MANIPAL

Project / Internship Offer Letter

Project Completion Letter

i

ACKNOWLEDGMENTS

This project titled, “Speech data Augmentation in the frequency domain using Deep Learning,”

would not have been possible without the support and guidance of my mentors, Dr. Chng Eng

Siong, Assoc. Professor, NTU Singapore and Dr. Muralikrishna SN, Asst. Professor – senior

scale, MIT Manipal. I would like to extend my sincerest thanks to them for helping me

throughout the duration of the internship. It was a great privilege and an honour working,

learning, and growing under their guidance.

I would also like to extend my gratitude towards our Dept. HOD and the teachers at Department

of Computer Science at MIT, Manipal for their constant support and motivation. Their

unwavering support through the internship and the past 4 years at MIT has developed me into

the person I am today, both on professional and on personal front. I would also like to thank

the Director, MIT Manipal for providing a platform for us, students, that enables us to pursue

these foreign internships without any hassle and for also maintaining transparency through the

internal working of the college administration.

I would also like to take this opportunity to thank my parents for their love and support during

these trying times. Their unwavering support was a key reason for me to be able to successfully

complete the project under a variety of changes, both external and internal.

Last, but surely not the least, I would like to thank the Almighty God who has always guided

me along the right paths of life.

Shashank Shirol

ii

ABSTRACT

Data augmentation for ASR (Automatic Speech Recognition) has been explored in various

ways, from applying time shifts to speed perturbation. The key aspect of these techniques is

that they augment the raw audio to generate new samples. Another approach to the problem is

the application of augmentation techniques on spectrograms of the input audio. A spectrogram

is a visual representation of the spectrum of frequencies of a signal as it varies with time.

This project is trying to solve the problem of generating noisy speech data from clean speech

data by treating the spectrograms of the clean audio signals. We intended to find and modify a

suitable GAN (Generative Adversarial Network) that can learn the noise characteristics

mapping from a small dataset to successfully be able to generate new noisy samples given clean

samples.

We studied two such GANs – SinGAN [1] and CUT [2]. SinGAN is a generative model that is

trained to learn from a single natural image. The model learns the internal distribution of

patches in an image and then, can generate high quality diverse samples that have the same

visual content as the input image. CUT (Contrastive Unpaired Translation) is an Image-to-

Image translation model that works by maintaining correspondence in content but not

appearance – by maximizing the mutual information between corresponding input and output

patches. We were successful in designing a pipeline that allowed for cost-effective speech data

augmentation, our method allows us to train a neural network with just 5 minutes’ worth of

data. Once trained, the model allows us to generate speech data that is infused with noise

characteristics of the training speech data.

Throughout the rest of the report/thesis, we will touch on the importance of data-augmentation

for ASR, we will see what other methods have been explored, and look at deep-learning

approaches; we will also explore the extent of effectiveness of these models via several

experimental setups. We will rely on a distance metric called, LSD (Log Spectral Distance) –

a distance measure (expressed in dB) between two spectra, to determine the efficacy of our

system.

iii

Table of Contents

 Page No

Acknowledgement i

Abstract ii

List Of Tables iv

List Of Figures v

Chapter 1 INTRODUCTION 1

 1.1 General Introduction to the topic 1

 1.2 Problem Definition 1-2

 1.3 Motivation and Goal 2

Chapter 2 BACKGROUND THEORY / LITERATURE REVIEW 3

 2.1 Background Theory 4-8

 2.2 Objectives 9

Chapter 3 METHODOLOGY 10

 3.1 Methodology 10-12

 3.2 Implementational Details 12-17

Chapter 4 RESULT ANALYSIS 18

 4.1 Experimental Setups 18-20

 4.2 Results 20-28

Chapter 5 CONCLUSION AND FUTURE SCOPE 29

 5.1 Conclusion 29-30

 5.2 Future Scope 30

REFERENCES 31

ANNEXURES 32-38

PROJECT DETAILS 39

PLAGIARISM REPORT

iv

LIST OF TABLES

Table No Table Title Page No

4.1 Summary of Experiments 20

4.2 Results for Experiment – I 21

4.3 Results for Experiment – II 22

v

LIST OF FIGURES

Figure No Figure Title Page No

1.1 Data Augmentation techniques used in SpecAugment 2

2.1 Flow of data in a trained model 3

2.2 A spectrogram example 4

2.3 A generic GAN architecture 5

2.4 Multi-Scale SinGAN architecture 6

2.5 Internal structure of a Generator in SinGAN 7

2.6 Demonstration of the Paint2Image task of SinGAN 7

2.7 The CUT architecture 8

3.1 Flow of data in a SinGAN model 11

3.2 Flow of data in a CUT model 12

3.3 A spectrogram generated by a visualization package 13

3.4 Mapping and Un-mapping Process 13

3.5 One-to-many sample generation 14

3.6 Modifications to the window dimensions in SinGAN 15

3.7 Patch-wise Contrastive learning for spectrograms 17

4.1 SinGAN Experiment – I: output 21

4.2 SinGAN Experiment – I: LSD vs. Scale graph 21

4.3 SinGAN Experiment – II: output 22

4.4 SinGAN Experiment – II: LSD vs. Scale graph 22

4.5 CUT Experiment – I: output 24

4.6 CUT Experiment – II: output 24

4.7 CUT Experiment – III: output 25

4.8 CUT Experiment – IV: output 26

4.9 CUT Experiment – V: output 26

4.10 Salt and Pepper Digital Noise Example 27

4.11 CUT Digital Noise Experiment – I: output 27

4.12 Speckle Digital Noise Example 28

4.13 CUT Digital Noise Experiment – II: output 28

1

CHAPTER 1

INTRODUCTION

1.1 GENERAL INTRODUCTION TO THE TOPIC

Automatic speech recognition (ASR) is a process of transcribing an utterance, given the speech

waveform, and further processing it to derive meaning. In our day-to-day lives, we use ASR

almost ubiquitously – from talking to personal assistants like the Apple Siri and/or Google

Assistant to using speech-to-text dictation software to create documents.

Training or developing a robust ASR using deep learning models requires a lot of speech data,

which is almost never readily available. One way we can tackle this problem is through data

augmentation. Data augmentation, traditionally, is a process of deriving new samples from a

given set of samples by applying a set of transforms. For example, in case of image data,

techniques like scaling, translation, rotation, flipping, adding noise, etc. have been employed

previously.

When it comes to speech data, we have two options – applying augmentation techniques on the

waveform or on the spectrograms (a visual representation of the spectrum of frequencies of a

signal as it varies with time). When working with speech data, different techniques employed

are noise injection, shifting time, changing pitch, changing speed, etc.

In this project, we explore a deep learning-based solution (as opposed to previously explored

solutions that use handwritten policies) to data augmentation of speech data that works on the

spectrograms of the given samples. In this project, we extensively studied two Generative

Adversarial Networks (GANs) – SinGAN and CUT. We found success in our rendition of CUT

that uses a special preprocessing pipeline to achieve the desired results.

1.2 PROBLEM DEFINITION

To train Automatic Speech Recognition (ASR) systems, having a large dataset is crucial, which

may not be readily available at times. So, we need a method to generate new data from existing

data – data augmentation. Data augmentation is a process of synthesizing new data from

previously seen data.

One aspect of augmenting data is generation of noisy samples given clean samples i.e., adding

of new synthetic samples. Here, we feed a system with examples of clean and noisy samples

(or, sometimes just the noisy samples, in case of SinGAN) for it to learn the characteristics of

the noise and then be able to generate corresponding noisy samples of the unseen clean samples.

2

1.3 MOTIVATION AND GOAL

An approach of augmenting audio data via their spectrograms is explored by Google AI in their

2019 paper SpecAugment: A Simple Data Augmentation Method for Automatic Speech

Recognition [3]. They explore augmentation by modifying spectrograms by warping them in

the time direction, masking blocks of consecutive frequency channels, and masking blocks of

utterances in time. Fig. 1.1 shows these modifications for clarity.

We, in this project, take the hand-engineered policies out of the equation and make this an

unsupervised learning problem by training neural networks to learn the characteristics of noise.

Our goal for this project, in other words, is to develop a GAN that, when trained on noisy

spectrogram(s), can produce noisy spectrograms from input clean spectrograms.

In the sections that follow, we shall discuss the background and existing solutions,

along with our proposed method and, ultimately, we will test the efficacy of the above two

models in the generation of noisy samples given clean samples and document the findings. We

shall conclude with some analysis of the results, discuss use-cases of this project, and explore

the future scope for improvement.

Fig. 1.1: From top to bottom, the figures depict the Log Mel

spectrogram of the base input with no augmentation, time warp,

frequency masking and time masking applied.

3

CHAPTER 2

BACKGROUND THEORY / LITERATURE REVIEW

The inspiration for this project stems from the lack of availability of large, paired speech audio

data in the real world, which is extremely important in training a robust Automatic Speech

Recognition (ASR) system. To solve this problem, we take a new approach – deep learning.

We explore two different GANs (Generative Adversarial Networks) to learn noise

characteristics from noisy samples such that these can be infused to unseen clean samples at a

later stage.

Both these architectures, on their own, are powerful at several image-manipulation tasks. We

tune and modify these architectures to work on spectrograms of speech audio data to,

ultimately, achieve data augmentation. Both SinGAN and CUT are relatively new works

published in 2019 and 2020, respectively.

To put the whole project into perspective, what we are trying to achieve can be modelled as in

Fig. 2.1:

Clean Speech Audio sample

Spectrogram

Trained GAN (Black Box)

Spectrogram

Noisy Speech Audio sample

Fig. 2.1 Flow of data in a trained model

4

2.1 BACKGROUND THEORY

2.1.1 Spectrogram

Waveforms of audio signals show us the loudness of the sound wave changing with time. These

amplitudes, however, are not very informative, as they only talk about the loudness of the

recording. To better understand the audio signal, it is necessary to transform it into frequency-

domain which tells us what frequencies are present in the signal. This is done by applying

Fourier Transform on the signal. This, however, is still not enough as we lose time information,

i.e., when the frequencies recorded were heard, or captured.

This is where Spectrograms come into picture. A visual representation of frequencies of a given

signal with time is called Spectrogram. In a spectrogram representation plot – one axis

represents the time; the second axis represents frequencies, and the colours represent magnitude

of the observed frequencies at a particular time. Fig. 2.2 shows a sample spectrogram.

2.1.2 Generative adversarial network (GAN)

Generative Adversarial Network, or GAN for short, is a technique for generative modeling

using deep learning; generative modeling is an unsupervised task wherein the machine

automatically discovers and learns patterns in input data in such a way that the model can then

be used to generate or output new samples that appear to be from the original dataset but are

not. GANs are a clever way of training a generative model by framing the problem as a

supervised problem with two-components: the generator and the discriminator. Simply put, the

generator model is used to generate new samples while the discriminator model is trained to

classify samples as either real (from the dataset) or fake (generated).

Fig. 2.2: A Spectrogram of the spoken words "nineteenth century".

5

The two components work in tandem in a zero-sum game, adversarial, until the discriminator

model is fooled about 50 percent of the time, meaning the generator is generating believable

samples. GANs have been researched extensively since they were first introduced in 2014 by

Ian Goodfellow in his paper Generative Adversarial Nets [4], most notably in image-to-image

translation tasks. Fig. 2.3 captures an example of the GAN architecture.

The two components, the generator and discriminator, are trained together. The generator

generates a batch of samples which, along with a batch “true” samples, are passed to the

discriminator that classifies them as “real” or “fake”. The discriminator is then updated to get

better at its task and so is the generator, depending on how much the generated samples were

able to fool the discriminator. These models are bettered on each iteration and when the

generator can generate samples that can fool the discriminator about half the time, we stop the

training process.

In the sections that follow, we discuss two GAN architectures that we studied and tweaked

during this project to obtain the desired results. The reason for choosing these architectures

becomes apparent as we explain how they work.

Fig. 2.3: The Generative Adversarial Network architecture.

6

2.1.3 SinGAN – Learning a Generative Model from a Single Natural Image

SinGAN is a generative model that is trained to learn from a single natural image. The model

learns the internal distribution of patches in an image and then, can generate high quality

diverse samples that have the same visual content as the input image.

SinGAN uses a layered architecture that enables it to learn patch distribution of different scale

images at every layer. A multi-scale GAN has a series of pairs of generators and discriminators

that are trained one-by-one. The discriminators are modelled such that the work on patches of

the image and not the entire image (to prevent the generator from learning to reproduce the

entire image).

Once the generators learn to produce good images that “fool” the discriminator at that level,

we keep it fixed and move up the level. The architecture is trained in a coarse-to-fine fashion

i.e., lower-level generators learning coarser features and upper-level generators learning finer

features.

Since we only have one training image, we train using its patches. SinGAN can learn coarse

features at lower levels and finer features at higher levels because effective patch size changes

across levels, Fig. 2.4 establishes this. Fig. 2.5 depicts what makes up a generator.

Fig. 2.4: Multi-scale SinGAN architecture.

7

Now, after training, we can use SinGAN for a variety of image-manipulation tasks. We take

advantage of the fact that at inference, SinGAN can only produce images with same patch

distribution as the training image. Thus, manipulation can be achieved by injecting a down-

sampled image into the generation pyramid at some scale.

One such application or image-manipulation task is Paint2Image – a style transfer module that

uses a style image (training image) and a content image (paint image) to generate outputs using

the trained model. The generated images preserve the layout and general structure of the paint

image while infusing fine details that match the training image. Fig. 2.6 shows what

Paint2Image module does.

2.1.4 CUT – Contrastive Learning for Unpaired Image-to-Image Translation

Image-to-Image translation is a class of computer vision problem where the goal is to learn a

mapping between an input image and an output image. There are several different architectures

that help achieve this, one such GAN is called CycleGAN [5]. CycleGAN is an unpaired

Image-to-Image translation model that is trained in an unsupervised manner using a collection

of images from source and target domain that do not need to be related in any way.

Fig. 2.5: Internal structure of a Generator in SinGAN with 5

convolutional layers.

Fig. 2.6: Paint2Image task.

8

We stress on the use of an unpaired translation model to mimic the real-world scenario wherein

paired speech audio data is seldom available. Upon further study of the CycleGAN architecture,

we realize that it could be made faster and more efficient; CUT, or Contrastive Unpaired

Translation, which is a slightly modified variant of CycleGAN builds upon the shortcomings

of CycleGAN – need to learn mapping in both directions, and an assumption that the mapping

is always 1:1. Meaning, if we are only interested in learning the mapping from A to B,

CycleGAN had to be unnecessarily trained on a reverse mapping as well, and CycleGAN

assumes that there is always a 1:1 mapping for a given pair of images, which is not necessarily

true.

CUT, therefore, learns twice as fast and is also able to produce comparable results to

CycleGAN. Fig 2.7 shows the CUT architecture.

Patch-wise Contrastive Learning uses a simple model – the generated output-patch (Z) must

appear closer (similar) to its corresponding input patch (Z+) in comparison to other random

patches (Z-
{1,2,3}). This illustrates a minimax learning objective. This makes up the final loss

function in addition to the traditional adversarial loss.

We use CUT in our project to generate a mapping from clean spectrograms to noisy

spectrograms, such that when a trained model is presented with a clean spectrogram of

previously unseen sample, it can generate its corresponding noisy spectrogram.

Fig. 2.7: CUT architecture.

9

2.2 OBJECTIVES

The main objective of this project is to find a suitable Generative Adversarial Network

architecture and tune it so that it can successfully learn the noise characteristics of noisy

spectrogram(s) fed to it, and generate noisy spectrograms from previously unseen clean

spectrograms, thus achieving a data augmentation pipeline. More aptly, the objective is to solve

the main shortcoming of the data augmentation technique used in SpecAugment i.e., use of

hand-engineered policies. We approach the problem as an unsupervised learning problem

wherein we provide the system with examples of both clean and noisy spectrograms and expect

the system to learn a mapping from one to another.

As we progress through the task, we also want to study the various factors affecting training

and generation. These factors include duration of the audio sample (as this directly contributes

to the size of its spectrogram), presence of a certain frequency band, gender of the speaker, and

presence of non-stationary noise.

All in all, the objectives can be summarized as follows:

➢ Find Suitable Generative Adversarial Network Architectures for our use-case.

➢ Tune them and subject to various experimental setups.

➢ Collect data from the experiments and rework the code to improve performance.

➢ Document the findings and compare the performance of different GANs.

10

CHAPTER 3

METHODOLOGY

We began by exploring the use of SinGAN for our task, we selected SinGAN because of its

unique architecture that can learn a representation using just one training sample, hence the

name “Sin” GAN. SinGAN uses a robust architecture that can be utilised for many tasks, from

Super-resolution to Style-transfer (or, Paint-to-Image) without altering the main architecture.

We make use of its Style-transfer module since we want to learn characteristics from one image

(a noisy spectrogram) and apply those to an input image (a clean spectrogram). This is exactly

like the Style image – Content image dynamic that Neural Style transfer follows.

After sufficient tinkering with SinGAN and extracting the best performance out of it, we started

looking at other architectures that might be helpful for our use-case. We concluded that our

task is extremely similar to Image-to-Image translation task which has been studied extensively

in the recent years. Based on performance and applicability, we decided to experiment with

CUT (Contrastive unpaired translation), it is an Image-to-Image translation model that can

learn a mapping from one domain of images to another without the need for parallel training

examples.

In the sections that follow, we shall discuss how we use both the architectures and further delve

into the implementational details of the same.

3.1 METHODOLOGY

3.1.1 SinGAN

We operate in the frequency domain of the signal. We take the Spectrograms of audio signals

(noisy) and feed the multi-scale architecture of SinGAN; we tune it to learn the noise

characteristics from the input spectrogram. We then feed the model with a Paint Image

(Spectrogram of a clean speech audio signal), we want SinGAN to map the noise characteristics

of the training image onto the Paint Image, while preserving the global structure of the Paint

Image.

By Global Structure we mean that the content of the audio signal, after reconstruction from

spectrogram, should not change. This is very similar to Neural Style Transfer [6] methods,

where we have a content image and a style image and the GAN outputs an image with the

content of the Content image in the style of the Style image.

11

The following block diagram (Fig. 3.1) shows an overview of the flow of data through the

system.

3.1.2 CUT

We train CUT with spectrograms of clean as well as noisy samples. Since CUT is an image-

to-image translation model, it attempts to learn a mapping from images of one domain to

another, for the sake of clarity we will refer to these as: source domain (domain A) and target

domain (domain B).

In our case, since we wish to learn a mapping from clean to noisy spectrograms, our domain A

training files will be clean samples and domain B training files will be noisy samples. We try

various combinations of these training files – from paired samples (same context clean and

noisy samples) to unpaired samples (different context clean and noisy samples).

After training the model, we begin the generation process. The output generates the learned

characteristics while retaining the context of the clean sample (speech content of the clean

sample). The process can be similarly modelled as above and is shown in Fig. 3.2.

Fig. 3.1 Flow of data in a SinGAN model –

during training and generation

12

3.2 IMPLEMENTATIONAL DETAILS

While we touch upon both architectures, we will extensively cover the use of CUT since that

is where we found our success in this project. Our rendition of CUT with a custom pre-

processing pipeline showed drastic improvement in performance while at the same time cutting

down on the amount of training data required.

In the following sub-sections, we cover implementational details of the project along with

modifications to the two models that allow us to use them for our use-case.

3.2.1 Modifications of spectrogram representation

We know that a visual representation of the frequencies present in a given signal is called a

spectrogram, and that in a spectrogram representation plot one axis represents time, the second

axis represents frequencies, and the colors represent magnitude of the signal at a particular

time. Internally, a spectrogram is represented as a 2D-matrix of real numbers, this form is

usually mapped to a color scheme by various visualization packages before being presented to

the user, e.g., Fig. 3.3.

Fig. 3.2 Flow of data in a CUT I2I translation

model – during training and generation

13

The problem with such a representation is that we cannot recover the original spectrogram

matrix for reconstructing the audio. Therefore, one of the first challenges was to modify the

spectrogram representation such that we can reconstruct the audio signal from the output of the

generative model. We then came up with a custom “mapping” function that maps a real-

numbered matrix (a spectrogram) to a 0-255 scaled grey-scale image that can be fed to the

generative models for training, and we then use an “un-mapping” function to obtain the original

spectrogram used for reconstruction. This process is illustrated in Fig. 3.4.

3.2.2 One-to-many sample generation

The shape and size of a spectrogram depends on the frequency bands present and the duration

of the audio file it is extracted from; also, we only want to learn a mapping from clean to noisy,

given the noisy samples share the noisy characteristics throughout the sample i.e., if two

sections are extracted from a noisy audio sample, they are bound to share the noisy

characteristics. We capitalize on this and split a large spectrogram into smaller components and

treat them as individual samples. This allows us to train a model with less than 5 minutes’

worth of data.

Fig. 3.3 A spectrogram generated by a popular

visualization package.

Fig. 3.4 Mapping and Un-mapping Process.

14

The process of splitting and re-joining of the components is taken care of by a custom module

internally. A high-level graphic illustrating how components (treated as individual samples)

are fed to CUT (we do not use this technique with SinGAN since it only uses one training

sample) is shown in Fig. 3.5.

3.2.3 Working changes to SinGAN and the effects:

We already know that SinGAN uses a multi-scale architecture to facilitate learning using only

one training example i.e., the same image is used at various scales to train generators and

discriminators at that level. This structure allows SinGAN to learn the characteristics from the

image with varying details, from learning coarser features at lower levels to learning finer

details at the higher levels.

This allows us to control the level of detail infused in the generated images by SinGAN. Here,

level 1 (starting level) will be “most” like the training sample but will lack the global structure

of the input image, while level N (last level) will be “most” like the input image but will lack

the characteristics of the training image. So, the optimal output is obtained by a level x such

that 1 ≤ x ≤ N.

This furthered our assumptions that SinGAN could be used to generate audio samples with

varying degree of similarity to the ground-truth, thus helping with data augmentation. We

Fig. 3.5 One-to-many sample generation

15

extensively experimented with SinGAN, the details of which are covered in the following

chapter.

We worked on the official implementation of SinGAN provided by the original authors, we

added helper functions to facilitate the use of spectrograms (instead of RGB images, as the

authors intended), and we also incorporated a reconstruction module that took care of

reconstructing the audio sample from the generated spectrogram internally, without any

interference from the user.

We also worked on a modified version of SinGAN that used a different windowing policy than

the original one. As we know, SinGAN uses a square window of fixed size that traverses the

input reference image while training the discriminator(s) so that it has, technically, more

samples to train on and with the setup as in, we were getting unsatisfactory results on our

experiments, so in-order to better capture the characteristics of the training image, we altered

the window dimensions to resemble a vertical cross-section, this forced the discriminator to

learn that the vertical cross-sections are what are to be remembered (since a vertical cross-

section covers the full range of frequencies). This idea is represented in the Fig. 3.6.

Fig. 3.6. (A) Depicts the original window shape.

(B) Depicts the new window shape.

(A)

(B)

16

Although this idea was logically sound, it worsened the performance. This deterioration in

performance is attributed to the decrease in the number of samples such a window generated.

Earlier when we had a square window, the number of samples the discriminator had for training

was: (W - s)2, where W is the width of the whole spectrogram (assume a square spectrogram

for the sake of simplicity) and s is the width of the square window, this number was reduced to

(W - s) when we chose the vertical cross-section window shape.

So, we had to scrape this idea moving forward. And, once we realized we had squeezed the

maximum performance from SinGAN, we started looking at other options, leading us to CUT.

3.2.4 Working changes to CUT and the effects:

Contrastive unpaired translation, or CUT, is an image-to-image translation model that can learn

a mapping from images of one domain to images of another domain, without the need for paired

training examples. This attribute of CUT is what is most attractive, the ability to learn a

mapping with unpaired samples is a game-changer. This scenario is most prominent in the real

world, where good datasets are already scarce, and availability of large, paired datasets are

virtually non-existent. In this subsection we explore CUT and learn how it successfully

obtained the desired results of this project.

CUT uses a patch-wise contrastive learning technique for one-sided translation. To learn more

about the algorithm, please refer to the original work in [2] where they have explained in detail

how they achieve this and why this approach “works” better. We will restrict ourselves with

the working of CUT with respect to spectrograms and will be using actual data generated by

CUT for this demonstration. A detailed graphic showing the working of patch-wise contrastive

learning for spectrograms can be found in Fig. 3.7.

Here, a generated output patch (highlighted with dark blue border) must appear closer to its

corresponding input patch (highlighted with light blue border), when compared to other random

patches (highlighted with yellow borders). CUT makes use of multilayer, patch-wise

contrastive loss which maximizes the mutual information between corresponding input and

output patches and minimizes the mutual information between a selected patch and randomly

chosen patches. In other words, we try to maximize the similarity between corresponding input-

output patches (positives) while maximizing dissimilarity between the selected patch and other

random patches (negatives).

17

Here, while training CUT, we make use of the one-to-many sample generation module that

allows us to train a satisfactory model with about than 5 minutes’ worth of data. To facilitate

fast splitting, we make use of threading and parallel computation. This reduces the time

required to initialize the data-loader (for 10 audio files with about 60 components, in total)

from ~2.0s to ~0.7s on a 4-core CPU.

Apart from this, we make use of the custom modules we wrote for SinGAN that allow for

directly passing audio input and receiving audio output. The user is not burdened with

extracting the spectrograms and the complexity of reconstruction process. We also adapt the

custom transforms from SinGAN that have proven to work on spectrograms. To facilitate on-

the-go re-joining of the generated spectrograms, we wrote a new data-structure that keeps track

of the original spectrograms along with the number of components of each input spectrogram,

and the order of the spectrograms.

Fig. 3.7 Patch-wise Contrastive learning for

spectrograms.

18

CHAPTER 4

RESULT ANALYSIS

The novelty of the proposed approach is in its simplicity and low implementational cost: we

can train a satisfactory model with less than 5 minutes’ worth of data; this model can then be

used to generate noisy samples. We test the efficacy of the proposed system on the RATS

speech corpus [7] (for English only) which is a collection of sampled clean telephonic

conversations and their parallel noisy versions. We make use of this dataset to verify the

performance of the model since we have access to the ground-truth files (true noisy samples of

clean samples that are fed to the models). We completely assess the strengths and weaknesses

of the system, we also test it with speech data containing non-stationary noise i.e., when the

statistics of the noise are not constant throughout the signal. For this we use the NOIZEUS

corpus [8]. And, for assessment we make use of LSD (Log-Spectral Distance) metric to validate

the goodness of results.

In the sections that follow, we will discuss the evaluation metric, along with its

implementational details, and expand upon the several experimental setups that demonstrate

the robustness of the proposed system.

4.1 EXPERIMENTAL SETUPS

4.1.1 Log-Spectral Distance

We measure the goodness of the results with a distance metric called, Log-Spectral Distance

(LSD) [9]. LSD is a distance measure between two spectra and is defined as:

 𝐿𝑆𝐷 =
1

𝐿
∑√

1

𝑁
∑ [10 log10

|𝑋̂(𝑙, 𝑘)|
2

|𝑋(𝑙, 𝑘)|2
]

2𝑁−1

𝑘=0

𝐿−1

𝑙=0

(Eq. 1)

Where l is the frame index, k is the index of the frequency bins, L is the total frames, and N is

the frame length. 𝑋(𝑙, 𝑘) denotes the DFT coefficient of the ground-truth noisy speech signal

and 𝑋̂(𝑙, 𝑘) denotes the DFT coefficient of the output noisy speech signal from the model.

19

Before we can compute LSD of two audio files, we must take care of certain abnormalities that

may arise due to processing with GAN. By doing so, we make the comparison free from any

ambiguity.

The process consists of four steps as described below:

➢ Time Alignment:

This correction is required since the spectrogram generated by the GAN model may

have shifted a few frames from their original location i.e., the spectrogram may have

moved forward or backward in time. This is done in four sub-steps as follows:

o Pad the smaller signal with 0s to match the length of the bigger signal.

o Add a small random noise to the 0s in the signal to avoid log10(0) (-inf)

problem in spectrograms.

o Compute the lag (no. of samples to move) in the signals by performing cross-

correlation on the spectrograms of the signals.

o Use NumPy to correct the lag by rolling required number of samples.

➢ Normalization:

This step is required to match the loudness of the output signal with the reference

signal since GAN outputs might be either louder or quieter than the reference signal,

and a distance metric would levy a penalty for this. This is done in three sub-steps as

follows:

o Create a BS.1770 meter to detect the loudness of the reference file.

o Use the meter to detect the loudness of the reference file.

o Normalize the output file to the same loudness as the reference file.

➢ Energy Equalization:

This step ensures we match the energies of the two signals. We perform this step by

calculating a gain of the output signal over the reference signal. To save computation

time, we consider the top 10% data with the highest energy to calculate gain, and we

equalize the weaker signal by multiplying it with the obtained gain value.

➢ LSD Calculation:

The final step of this process is the calculation of LSD as per equation 1, and after all

the previous corrections are applied to the two files.

4.1.2 Experiments

We first try to simulate the most likely scenario wherein we have a mix of clean samples and

a mix of noisy samples. We perform this experiment twice, once with paired samples and once

20

with unpaired samples, to see the effect on performance. We use the models to train/learn a

mapping with this data and document the results. Second, we assess the impact on performance

when we try to learn a mapping from clean to noisy with clean samples comprising of only

female speakers and noisy samples comprising of only male speakers. And, for the final

experiment we assess the system's performance on learning a mapping with the presence of

non-stationary noise.

The following table summarizes the class of experiments we conducted with both SinGAN and

CUT:

Name
Domain A

(Clean)

Domain B

(Noisy)
Paired

RATS (channel A)

• Mixed Speakers – I

• Mixed Speakers – II

• Speaker Segregated

NOIZEUS

• Babble

• Train

Mixed

Mixed

Female

Mixed

Mixed

Mixed

Mixed

Male

Mixed

Mixed

YES

NO

NO

NO

NO

Apart from the above stated experiments, we also subject CUT to another class of experiments.

These are described and discussed in detail in the following sections.

4.2 RESULTS

4.2.1 SinGAN

Since SinGAN differs from CUT in both, implementation, and architecture, we conduct a

separate set of experiments on SinGAN that loosely fall in the same classes of experiments

summarized in Table 4.1.

We know that SinGAN trains with ONLY one training sample, we provide it with a single

noisy RATS sample (as opposed to a set of noisy RATS samples to CUT) for learning a

mapping. Once the model is trained, we use a clean RATS sample to generate outputs that have

the characteristics of the training input file i.e., noise. And since we can control the detail

infused in the generated output (by generating output at different scales), we generate output

with different levels of detail and asses which one is the closest to the ground truth.

Table 4.1 Summary of Experiments

21

Note: We cannot test SinGAN with paired samples i.e., the train file and the generation file

having the same content. This would break the purpose of testing the mapping. Hence, we only

test with files that are contextually different.

➢ Training File: RATS Female Noisy (8k Hz)

Generation File: RATS Female Clean (8k Hz)

Context: Different

For the experiment above, the LSD scores between the ground truth file and for outputs

with various level of detail are as follows:

Scale 1 2 3 4 5 6 7

LSD 12.48 11.99 12.53 13.02 13.67 13.71 13.96

Spectrogram (for the best SinGAN output):

Table 4.2 Results for this experiment

(A) (B)

Fig. 4.1 (A) SinGAN output – scale 2; (B) GT

Fig. 4.2 LSD v Scale for this experiment

22

➢ Training File: RATS Female Noisy (8k Hz)

Generation File: RATS Male Clean (8k Hz)

Context: Different

For the experiment above, the LSD scores between the ground truth file and for outputs

with various level of detail are as follows:

Scale 1 2 3 4 5 6 7

LSD 15.65 14.49 14.44 14.60 14.81 14.83 15.09

Spectrogram (for the best SinGAN output):

Table 4.3 Results for this experiment

(A) (B)

Fig. 4.3 (A) SinGAN output – scale 3; (B) GT

Fig. 4.4 LSD v Scale for this experiment

23

The results of the experiments follow the trend we assumed they would, the LSD scores first

decrease and then increase. This is partly due to the fact that output generated at each scale is

has varying level of detail from the training file. The output at scale 1 is more like the training

file (noisy) and the output at scale 7 is more like the generation file (clean). So, the best output

is obtained at a scale between 1 and 7 where the model infuses just the right amount of detail

to make it, somewhat, resemble the ground truth file (a true noisy version of the generation

file).

From Experiment 2 above, we see that the model takes a hit in performance when we use a

female speaker for training and a male speaker for generation, so we may conclude that the

model is not speaker independent, a characteristic that is true with CUT as we shall see ahead.

With sub-par performance as seen above, we felt it was futile to invest time and efforts into

testing the model out in other scenarios. The results we obtained were after considerable

tweaking and tuning of the model to extract every ounce of performance out it. After realizing

we cannot extend SinGAN’s performance any further, we started looking for other GAN

architectures that might help: CUT.

4.2.2 CUT

CUT is an image-to-image translation model that can learn a mapping from one domain to

another without the need for paired training samples. On paper, this architecture looked like it

would work best for our use-case, and it did. CUT worked better than SinGAN from the get-

go, producing results that were far superior to SinGAN’s results. Tweaking and tuning the CUT

as mentioned above only improved the results. Unlike SinGAN, there is no way to control the

level of detail in the generated output and hence, for each generation file fed to the model we

get one output file with the learned mapping applied.

As described in sub-section 4.1.2, we subject CUT to the aforementioned experiments and

assess the performance of the model. Surprisingly enough, CUT sometimes performed worse

when fed with parallel training data. So, we stick with the use of non-parallel data for our

experiments, except in experiment 1. The details and the results of the experiment are discussed

below:

➢ Domain A: Mixed (Male + Female) clean audio files (8k)

Domain B: Mixed (Male + Female) noisy audio files (8k)

Context: Same (i.e., parallelly trained)

Generation: Mixed (Male + Female) clean audio files (8k) from test set.

24

For the experiment, the LSD score (avg.), and an example ground truth spectrogram

and the output spectrogram are given as follows:

LSD: 7.75

➢ Domain A: Fixed (Male + Female) clean audio files (8k)

Domain B: Fixed (Male + Female) noisy audio files (8k)

Context: Different (i.e., non-parallel files)

Generation: Fixed (Male + Female) clean audio files (8k) from train set.

In this experiment, we use the same set of files used to train the model, for generation

because the model has never seen the ground truth files for them. This would, in no

way, contaminate the generation process. This experiment demonstrates the most likely

scenario in that we have access to a set of clean audio files and a set of noisy audio files

(not parallel), and we wish to learn a mapping from clean → noisy.

For the experiment, the LSD score (avg.), and an example ground truth spectrogram

and the output spectrogram are given as follows:

LSD: 6.22

(A) (B)

Fig. 4.5 (A) GT; (B) CUT output

(A) (B)

Fig. 4.6 (A) GT; (B) CUT output

25

➢ Domain A: Fixed (Female) clean audio files (8k)

Domain B: Fixed (Male) noisy audio files (8k)

Context: Different (i.e., non-parallel files)

Generation: Fixed (Female) clean audio files (8k) from train set.

We can use the files from the train set for the same reasons as stated above. The LSD

scores do not vary by much and the model is able to retain the content of the generation

files while producing the outputs i.e., the outputs do not have a male voice or any other

characteristics like deep voice, low pitch, etc.

For the experiment, the LSD score (avg.), and an example ground truth spectrogram

and the output spectrogram are given as follows:

LSD: 6.78

From the results obtained for the experiment, we could conclude that CUT learns a

robust mapping that is speaker independent.

➢ Domain A: Mixed (Male + Female) clean audio files (8k)

Domain B: Mixed (Male + Female) noisy (non-stationary - Babble) audio files (8k)

Context: Different (i.e., non-parallel files)

Generation: Mixed (Male + Female) clean audio files (8k) from train set.

Here, we encounter one of the shortcomings of CUT. While CUT is great at learning a

mapping when the noise characteristics are constant throughout, it fails when the noise

is non-stationary i.e., the noise characteristics vary with different cross-sections of the

sample. Under this class of experiments, we test with two kinds of noises – babble and

a moving train.

For the experiment, the LSD score (avg.), and an example ground truth spectrogram

and the output spectrogram are given as follows:

(A) (B)

Fig. 4.7 (A) GT; (B) CUT output

26

LSD: 7.39

Although the LSD is deceivingly small, on inspecting the generated output via a hearing

device, we can conclude that CUT fails in capturing the noise. One of the reasons why

the LSD is low because, non-stationary noise, unlike stationary noise seen until now, is

not captured properly in the spectrogram. Which is also why CUT fails in this task.

➢ Domain A: Mixed (Male + Female) clean audio files (8k)

Domain B: Mixed (Male + Female) noisy (non-stat. – Moving Train) audio files (8k)

Context: Different (i.e., non-parallel files)

Generation: Mixed (Male + Female) clean audio files (8k) from train set.

The premise of this experiment is identical the one above, but instead of having babble

noise, we will test with “moving train” noise.

For the experiment, the LSD score (avg.), and an example ground truth spectrogram

and the output spectrogram are given as follows:

LSD: 8.07

(A) (B)

Fig. 4.8 (A) GT; (B) CUT output

(A) (B)

Fig. 4.9 (A) GT; (B) CUT output

27

In addition to the experiments conducted above, we also test CUT against presence of two

kinds of digital noises. These noises are added digitally to spectrograms of clean audio files.

The purpose of these experiments was to determine if CUT could replicate any visual

distortion, the details and the results of the experiments are discussed below:

➢ Salt and Pepper (SnP):

Salt-and-pepper noise, or impulse noise, is caused by sharp and sudden disturbances in

the image signal. It can be thought of as sparsely occurring white and black pixels. Fig.

4.10 illustrates a spectrogram that is infused with salt-and-pepper noise randomly.

Here, the setup follows the same trend as in previous experiments. It can be summarized

as:

 Domain A – Clean Audio Samples

 Domain B – Clean Audio Samples + SnP noise added to spectrograms.

 Context – Different

The results of this experiment are as follows in Fig. 4.11:

Fig. 4.10 A spectrogram infused with SnP noise.

(A) (B)

Fig. 4.11 (A) Input Spec; (B) CUT output

28

➢ Speckle:

Speckle noise arises due to environmental conditions affecting the imaging sensor while

acquiring an image. It can also be described as granular noise that exists in an image

and degrades its quality. It is generated by multiplying random pixel values with

different pixels of an image. Fig. 4.12 illustrates a spectrogram that is infused with

speckle noise.

Here, the setup follows the same trend as in previous experiments. It can be summarized

as:

 Domain A – Clean Audio Samples

 Domain B – Clean Audio Samples + Speckle noise added to spectrograms.

 Context – Different

The results of this experiment are as follows in Fig. 4.13:

As is evident from the results above, CUT was successful in learning the digital noise

characteristics.

Fig. 4.12 A spectrogram infused with Speckle

noise.

(A) (B)

Fig. 4.13 (A) Input Spec; (B) CUT output

29

CHAPTER 5

CONCLUSION AND FUTURE SCOPE

We began this project with one goal in mind: To come up with a system that can be used for

data augmentation of speech data, while treating it as an unsupervised problem. This problem

of data augmentation was studied earlier by Google AI in [3], but they made use of hand-

engineered policies, we wanted to explore the use of GANs as they have seen an upsurge of

work put into them with the newer architectures outputting extraordinary results. We wanted

to utilize a suitable GAN for our use-case, which led us to experiment with SinGAN which

put-forth an attractive claim of being able to train on a single training example. We worked on

this architecture and extracted as much performance as possible before realizing the results

obtained were not satisfactory. We then moved on to CUT, an unpaired image-to-image

translation model that claimed to learn a mapping from one domain to another with nothing but

unpaired training samples. This piqued our interest, and we began experimenting with CUT.

The initial results with CUT were surprisingly good, and with a little tuning and tweaking of

the model, we were sure we could come up with a viable solution to our problem.

Our efforts with CUT proved worthwhile when we were able to train a CUT model with less

than 5 minutes’ worth of data and produce satisfactory results, thanks to the one-to-many

generation module that we fitted CUT with. Along with changes to the data-loader, we tweaked

the internal representation of input images (in our case, spectrograms) so that once we

generated the outputs, they can be reconstructed to audio files.

5.1 CONCLUSION

We now have a system that can be trained to learn a mapping from clean to noisy (stationary)

spectrograms with less than 5 minutes’ worth of data. Making this approach cost effective in

terms of training data required, this is likely to be the most realistic scenario wherein we do not

always have access to abundant data from one domain.

We started with SinGAN, took inspiration from its implementation where it uses a sliding

window to scan over the single input image, allowing it to train the discriminator on the

“patches” of the image. We implement this as a one-to-many generation module where we split

an input spectrogram into components and treat them as individual samples. This has two

benefits – we can make do with less training data and the aspect ratio of the spectrograms is

preserved. This rendition of CUT has proven to be very effective in getting us the desired

results, doing so with very little data.

30

In the end, we are left a robust image-to-image translation model that has more merits than

demerits. The model is extremely light-weight, can generate samples at a very fast rate, and

can be trained in less than 4 hours on a mid-tier GPU. When we put all these together, we can

confidently say that the scope of applications of this model are abundant. Even with all these

merits, the shortcomings of the model cannot be ignored. We discuss the range of problems

with the model in the next section where we shed light on future work that can be conducted

to further improve the performance.

5.2 FUTURE SCOPE

While we were more than happy with the results obtained from CUT, we believe it has some

untapped potential that can be extracted. The ideas and approaches that we feel will further

improve CUT’s performance are detailed below:

We have been working on the magnitude spectrogram of the audio files; these magnitude

spectrograms are obtained by separating the phase information from the complex spectrogram

that is obtained by taking a Fast-Fourier transform. We are now looking at solutions that do not

separate the phase information when generating the output, or in other words, when dealing

with the complex spectrograms.

Another avenue for improving the performance is the inclusion of phase information in the loss

function that is trained by the model. In its current implementation, we use the phase of the

clean audio + the generated output (noisy) spectrogram to reconstruct the audio file. If we

include phase information in the loss function of the model, we might be able to predict phase

information for the output spectrogram, and the reconstruction would be better.

Lastly, one of the most crucial drawbacks of CUT is its inability to learn a mapping in the

presence of non-stationary noise. The current implementation fails to accurately capture noises

like babble (people talking in the background) and moving trains, this might be attributed to

the fact that these kinds of noise are not captured properly in the spectrogram whilst noises like

a constant gaussian noise, white noise, or any other stationary noise is seen in a spectrogram

and is constant throughout the sample. One way to tackle this might be to delete segments in

the training samples where the background noise falls below a certain threshold, this way CUT

can learn a consistent mapping that is reproducible on, later, previously unseen clean samples.

31

REFERENCES

[1] Tamar Rott Shaham, Tali Dekel, Tomer Michaeli; SinGAN: Learning a Generative

Model from a Single Natural Image, Proceedings of the IEEE/CVF International

Conference on Computer Vision (ICCV), 2019, pp. 4570-4580

[2] T. Park, A. A Efros, R. Zhang, J.Y. Zhu. Contrastive Learning for Unpaired Image-to-

Image Translation, ECCV, 2020

[3] Park, Daniel S. and Chan, William and Zhang, Yu and Chiu, Chung-Cheng and Zoph,

Barret and Cubuk, Ekin D. and Le, Quoc V., SpecAugment: A Simple Data

Augmentation Method for Automatic Speech Recognition, Interspeech 2019, 2019

[4] Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S.,

Courville, A. and Bengio, Y., 2014. Generative adversarial nets. Advances in neural

information processing systems, 27.

[5] Jun-Yan Zhu*, Taesung Park*, Phillip Isola, and Alexei A. Efros. "Unpaired Image-to-

Image Translation using Cycle-Consistent Adversarial Networks", in IEEE

International Conference on Computer Vision (ICCV), 2017 (* indicates equal

contributions)

[6] Leon A. Gatys and Alexander S. Ecker and Matthias Bethge, A Neural Algorithm of

Artistic Style, 2015

[7] Walker, Kevin, et al. RATS Speech Activity Detection LDC2015S02. Hard Drive.

Philadelphia: Linguistic Data Consortium, 2015.

[8] Hu, Y. and Loizou, P. (2007). “Subjective evaluation and comparison of speech

enhancement algorithms,” Speech Communication, 49, 588-601.

[9] Abramson and I. Cohen, “Simultaneous detection and estimation approach for speech

enhancement”, IEEE Transactions on Audio, Speech, and Language Processing, vol.

15, no. 8, pp. 2348–2359, 2007.

[10] Sue Grace, Phil Gravestock, Inclusion and Diversity: Meeting the Needs of All

Students, Taylor & Francis, 2008

[11] Ibo van de Poel, Lamber Royakkers, Ethics, Engineering and Technology, Wiley-

Blackwell Publishers, May 2011.

[12] Engineering ethics in practice: a guide for engineers, The Royal Academy of

Engineering, August 2011 URL: https://www.raeng.org.uk/publications/other/

engineering-ethics-inpractice-full

32

ANNEXURES

Full code available at: https://github.com/shashankshirol/GeneratingNoisySpeechData

I. ONE-TO-MANY GENERATION MODULE:

def split_and_save(spec, pow=1.0, state = "Train", channels = 1):

 """

 Info: Takes a spectrogram, splits it into equal parts;

uses median padding to achieve this.

 Created: 13/04/2021

 By: Shashank S Shirol

 Parameters:

 spec - Magnitude Spectrogram

 pow - value to raise the spectrogram by

 state - Decides how the components are returned.

 """

 fix_w = 128 # because we have 129 n_fft bins; this will

result in 129x128 spec components

 orig_shape = spec.shape

 #### adding the padding to get equal splits

 w = orig_shape[1]

 mod_fix_w = w % fix_w

 extra_cols = 0

 if(mod_fix_w != 0):

 extra_cols = fix_w - mod_fix_w

 #making padding by repeating same audio (takes care of edge

case where actual data < padding columns to be added)

 num_wraps = math.ceil(extra_cols/w)

 temp_roll = np.tile(spec, num_wraps)

 padd=temp_roll[:,:extra_cols]

 spec = np.concatenate((spec, padd), axis=1)

 ####

 spec_components = []

 spec = functions.power_to_db(spec**pow)

 X, X_min, X_max = functions.scale_minmax(spec, 0, 255)

 X = np.flip(X, axis=0)

 np_img = X.astype(np.uint8)

 curr = [0]

 while(curr[-1] < w):

 temp_spec = np_img[:, curr[-1]:curr[-1] + fix_w]

 rgb_im = functions.to_rgb(temp_spec, chann = channels)

 img = Image.fromarray(rgb_im)

 spec_components.append(img)

 curr.append(curr[-1] + fix_w)

33

 if (state == "Train"):

 return spec_components if extra_cols == 0 else

spec_components[:-1] # No need to return the component with

padding.

 else:

 return spec_components # If in "Test" state, we need all

the components.

II. SPECTROGRAM EXTRACTION

STANDARD_LUFS = -23.0

def extract(filename, sr=None, energy = 1.0, hop_length = 64,

state = None):

 """

 Extracts spectrogram from an input audio file

 Important Arguments:

 filename: path of the audio file

 n_fft: length of the windowed signal after padding

with zeros.

 """

 data, sr = librosa.load(filename, sr=sr)

 data *= energy

 ##Normalizing to standard -23.0 LuFS

 meter = pyln.Meter(sr)

 loudness = meter.integrated_loudness(data)

 data = pyln.normalize.loudness(data, loudness,

target_loudness = STANDARD_LUFS)

 ##

 comp_spec = librosa.stft(data, n_fft=256, hop_length =

hop_length, window='hamming')

 mag_spec, phase = librosa.magphase(comp_spec)

 phase_in_angle = np.angle(phase)

 return mag_spec, phase_in_angle, sr

34

III. MODIFYING SPECTROGRAM REPRESENTATION

To convert the spectrogram (an 2d-array of real numbers) to a

storable form (0-255)

def scale_minmax(X, min=0.0, max=1.0):

 X_std = (X - X.min()) / (X.max() - X.min())

 X_scaled = X_std * (max - min) + min

 return X_scaled, X.min(), X.max()

To get the original spectrogram (an 2d-array of real numbers)

from an image form (0-255)

def unscale_minmax(X, X_min, X_max, min=0.0, max=1.0):

 X = X.astype(np.float)

 X -= min

 X /= (max - min)

 X *= (X_max - X_min)

 X += X_min

 return X

IV. ADD DIGITAL NOISE (SALT AND PEPPER)

def salt_and_pepper(img, prob = 0.005):

 """

 Infuses an input image with Salt and Pepper noise with a

probability of P = prob;

 Arguments:

 img : input image, can be a PIL image.

 prob : 0.005 (default) probability with which the

noise is infused

 """

 img = np.asarray(img)

 output = np.zeros(img.shape, np.uint8)

 thres = 1 - prob

 for i in range(img.shape[0]):

 for j in range(img.shape[1]):

 ran = random.random()

 if ran < prob:

 output[i][j] = 0

 elif ran > thres:

 output[i][j] = 255

 else:

 output[i][j] = img[i][j]

 return Image.fromarray(output)

35

V. ADD DIGITAL NOISE (SPECKLE)

def speckle(img, prob = 0.1):

 """

 Adds speckle noise to an input image with probability P =

prob;

 Arguments:

 img : input image, can be a PIL image.

 prob: 0.1 (default) probability with which the noise

is added.

 """

 img = np.asarray(img)

 output = np.zeros(img.shape, np.uint8)

 thres = 1 - prob

 for i in range(img.shape[0]):

 for j in range(img.shape[1]):

 ran = random.random()

 if ran < prob:

 output[i][j] = 128

 for k in range(5):

 output[i - k][j - k] = 128 + 10 * ran

 else:

 output[i][j] = img[i][j]

 return Image.fromarray(output)

VI. LSD CALCULATION

A. TIME ALIGNMENT AND ENERGY EQUALIZATION

def AddNoiseFloor(data):

 """

 To prevent the log(0) computation, we add a small value

to the frames.

 """

 frameSz = 128

 noiseFloor = (np.random.rand(frameSz) - 0.5) * 1e-5

 numFrame = math.floor(len(data)/frameSz)

 st = 0

 et = frameSz-1

 for i in range(numFrame):

 if(np.sum(np.abs(data[st:et+1])) < 1e-5):

 data[st:et+1] = data[st:et+1] + noiseFloor

 st = et + 1

 et += frameSz

 return data

36

def time_and_energy_align(data1, data2, sr):

 nfft = 256

 # hop_length = win_length or frameSz – overlaps

 hop_length = 1

 win_length = 256

 ##Adding small random noise to prevent -Inf problem with Spec

 data1 = AddNoiseFloor(data1)

 data2 = AddNoiseFloor(data2)

 ##Pad with silence to make them equal

 zeros = np.zeros(np.abs((len(data2)-len(data1))),dtype=float)

 padded = -1

 if(len(data1) < len(data2)):

 data1 = np.append(data1, zeros)

 padded = 1

 elif(len(data2) < len(data1)):

 data2 = np.append(data2, zeros)

 padded = 2

 # Time Alignment

 # Cross-Correlation and correction of lag using the

spectrograms

 spec1 = abs(librosa.stft(data1, n_fft=nfft,

hop_length=hop_length,

win_length=win_length, window='hamming'))

 spec2 = abs(librosa.stft(data2, n_fft=nfft,

hop_length=hop_length,

win_length=win_length, window='hamming'))

 energy1 = np.mean(spec1, axis=0)

 energy2 = np.mean(spec2, axis=0)

 n = len(energy1)

 corr = signal.correlate(energy2, energy1, mode='same') /

np.sqrt(signal.correlate(energy1,

energy1, mode='same')[int(n/2)] * signal.correlate(energy2,

energy2, mode='same')[int(n/2)])

 delay_arr = np.linspace(-0.5*n/sr, 0.5*n/sr,

n).round(decimals=6)

 #print(np.argmax(corr) - corr.size//2) no. of samples to move

 delay = delay_arr[np.argmax(corr)]

 if(delay*sr < 0):

 to_roll = math.ceil(delay*sr)

 else:

 to_roll = math.floor(delay*sr)

37

 # correcting lag

 # if both signals were the same length, doesn't matter which

one was rolled

 if(padded == 1 or padded == -1):

 data1 = np.roll(data1, to_roll)

 elif(padded == 2):

 data2 = np.roll(data2, -to_roll)

 # Energy Alignment

 data1 = data1 - np.mean(data1)

 data2 = data2 - np.mean(data2)

 sorted_data1 = -np.sort(-data1)

 sorted_data2 = -np.sort(-data2)

 L1 = math.floor(0.01*len(data1))

 L2 = math.floor(0.1*len(data1))

 gain_d1d2 = np.mean(np.divide(sorted_data1[L1:L2+1],

sorted_data2[L1:L2+1]))

 #Apply gain

 data2 = data2 * gain_d1d2

 return data1, data2

B. LOUDNESS NORMALIZATION

def normalize(sig1, sig2):

 """sig1 is the ground_truth file

 sig2 is the file to be normalized"""

 # Here we can either normalize loudness to match the

reference file or -23.0 LUFS standard

 # In this case, we are matching it to the LUFS standard

 data1, sr1 = sf.read(sig1)

 data2, sr2 = sf.read(sig2)

 assert sr1 == sr2

 meter1 = pyln.Meter(sr1)

 meter2 = pyln.Meter(sr2)

 loudness1 = meter1.integrated_loudness(data1)

 loudness2 = meter2.integrated_loudness(data2)

38

 data2_normalized = pyln.normalize.loudness(data2, loudness2,

target_loudness=-23.0)

 data1_normalized = pyln.normalize.loudness(data1, loudness1,

target_loudness=-23.0)

 return data1_normalized, data2_normalized, sr1

C. LSD CALCULATION

def calc_LSD_spectrogram(a, b):

 """

 Computes LSD (Log - spectral distance)

 Arguments:

 a: vector (torch.Tensor), modified signal

 b: vector (torch.Tensor), reference signal (ground

truth)

 """

 if(len(a) == len(b)):

 diff = torch.pow(a-b, 2)

 else:

 stop = min(len(a), len(b))

 diff = torch.pow(a[:stop] - b[:stop], 2)

 sum_freq = torch.sqrt(torch.sum(diff, dim=1)/diff.size(1))

 value = torch.sum(sum_freq, dim=0) / sum_freq.size(0)

 return value.numpy()

39

PROJECT DETAILS

Student Details

Student Name Shashank S Shirol

Registration Number 170905178 Section / Roll No C / 27

Email Address shashank.shirol1@gmail.com Phone No (M) +91 8788704268

Project Details

Project Title Generating noisy speech data from clean data in the frequency

domain using Deep Learning Methods

Project Duration 6 Months Date of reporting 04/01/2021

Organization Details

Organization Name Nanyang Technological University, Singapore

Full postal address

with pin code

50 Nanyang Ave, Singapore 639798

Website address https://www.ntu.edu.sg/Pages/home.aspx

External Guide Details

Name of the Guide Dr. Chng Eng Siong

Designation Assoc. Professor

Full contact address

with pin code

School of Computer Science and Engineering

Nanyang Technological University (NTU), 50 Nanyang Ave,

Singapore 639798

Email address ASESChng@ntu.edu.sg Phone No (M)

Internal Guide Details

Faculty Name Dr. Muralikrishna SN

Full contact address

with pin code

Dept of Computer Science & Engg, Manipal Institute of Technology,

Manipal – 576 104 (Karnataka State), INDIA

Email address murali.sn@manipal.edu

